Functions: Your Code’s Superpower
Functions in R are like the Force - they give you the power to create reusable code that can be called upon whenever needed. Think of them as your personal Jedi powers that you can use over and over again!
Creating Functions
Functions are created using the function()
keyword, followed by arguments in parentheses and the function body in curly braces. It’s like creating your own lightsaber - you need the right components and the right technique!
# Basic function structure
<- function(base_power, multiplier) {
calculate_power <- base_power * multiplier
total_power return(total_power)
}
# Using the function
<- calculate_power(80, 1.5) # Returns 120 jedi_power
Function Arguments
Functions can have: - Required arguments (like a lightsaber - you need it!) - Default arguments (like having a backup blaster) - Optional arguments (like that thermal detonator you hope you won’t need)
# Function with default arguments
<- function(base_power, multiplier = 1.5, is_dark_side = FALSE) {
calculate_force_power if (is_dark_side) {
<- base_power * multiplier * 1.2 # Dark side bonus!
total_power else {
} <- base_power * multiplier
total_power
}return(total_power)
}
# Using with different arguments
<- calculate_force_power(80) # Uses defaults
light_side <- calculate_force_power(80, is_dark_side = TRUE) # Override default dark_side
Exercise 1: Creating Functions
Create a function that calculates a character’s total power level based on their base stats and equipment:
Create a function that takes base stats and equipment bonuses as arguments. Remember to use the function()
keyword and return()
statement. It’s like creating your own power calculator!
# Create a function to calculate total power
<- function(base_power, weapon_bonus = 0, armor_bonus = 0) {
calculate_character_power <- base_power + weapon_bonus + armor_bonus
total_power return(total_power)
}
# Test the function
<- calculate_character_power(80, 20, 10) # Base 80 + Lightsaber 20 + Robes 10
jedi_power <- calculate_character_power(85, 25, 15) # Base 85 + Red Lightsaber 25 + Armor 15
sith_power
# Print results
print(paste("Jedi Power Level:", jedi_power))
print(paste("Sith Power Level:", sith_power))
Control Structures: The Force of Decision Making
Control structures in R are like the Jedi Council - they help you make decisions and control the flow of your code. They’re essential for creating complex programs that can adapt to different situations.
If-Else Statements
The if-else
structure lets you make decisions based on conditions:
# Basic if-else
<- function(power_level) {
check_force_power if (power_level > 100) {
return("Master Jedi Level")
else if (power_level > 50) {
} return("Padawan Level")
else {
} return("Force Sensitive")
}
}
# Using if-else
<- check_force_power(120) # Returns "Master Jedi Level" power_status
Loops: The Repetitive Force
Loops are like having a clone army - they let you repeat actions multiple times!
For Loops
# Basic for loop
for (i in 1:5) {
print(paste("Training Day", i))
}
# For loop with a vector
<- c("Yoda", "Mace Windu", "Obi-Wan")
jedi_council for (master in jedi_council) {
print(paste(master, "is on the council"))
}
While Loops
# While loop example
<- 50
power_level while (power_level < 100) {
print(paste("Current power level:", power_level))
<- power_level + 10
power_level }
Exercise 2: Control Structures
Create a program that simulates a Jedi training session:
Use if-else statements to check power levels and loops to simulate training sessions. Think of it as creating your own Jedi training program!
# Function to simulate Jedi training
<- function(initial_power, training_days) {
simulate_training <- initial_power
current_power
for (day in 1:training_days) {
# Random power increase (like meditation success)
<- sample(1:10, 1)
power_increase <- current_power + power_increase
current_power
# Check power level and give feedback
if (current_power >= 100) {
print(paste("Day", day, ": Master Jedi achieved! Power level:", current_power))
else if (current_power >= 50) {
} print(paste("Day", day, ": Padawan level reached! Power level:", current_power))
else {
} print(paste("Day", day, ": Still training... Power level:", current_power))
}
}
return(current_power)
}
# Run the simulation
<- simulate_training(30, 10)
final_power print(paste("Final power level:", final_power))
String Operations: The Power of Words
String operations in R are like having a universal translator - they help you manipulate and transform text in various ways.
Basic String Operations
# String concatenation
<- "Luke"
first_name <- "Skywalker"
last_name <- paste(first_name, last_name) # Returns "Luke Skywalker"
full_name
# String length
nchar(full_name) # Returns 13
# Substring extraction
substr(full_name, 1, 4) # Returns "Luke"
# Case conversion
toupper(full_name) # Returns "LUKE SKYWALKER"
tolower(full_name) # Returns "luke skywalker"
Regular Expressions
Regular expressions are like having a Force-powered search tool:
# Basic pattern matching
<- c("Luke Skywalker", "Obi-Wan Kenobi", "Yoda", "Mace Windu")
jedi_names grep("Sky", jedi_names) # Returns 1 (position of "Luke Skywalker")
# Pattern replacement
gsub("Sky", "Force", full_name) # Returns "Luke Forcewalker"
# Pattern matching with more detail
grepl("^[A-Z]", jedi_names) # Returns TRUE for names starting with capital letter
Exercise 3: String Operations
Create a function that processes Jedi names and titles:
Use string functions like paste()
, substr()
, gsub()
, and regular expressions to manipulate text. It’s like creating your own Jedi name generator!
# Function to process Jedi names
<- function(first_name, last_name, rank = "Padawan") {
process_jedi_name # Create full name
<- paste(first_name, last_name)
full_name
# Add rank title
<- paste(rank, full_name)
titled_name
# Count characters
<- nchar(full_name)
name_length
# Create Jedi code name (first 3 letters of first name + last 2 of last name)
<- paste(
code_name substr(first_name, 1, 3),
substr(last_name, nchar(last_name)-1, nchar(last_name)),
sep = ""
)
# Convert to uppercase for dramatic effect
<- toupper(code_name)
code_name
# Return results as a list
return(list(
full_name = full_name,
titled_name = titled_name,
name_length = name_length,
code_name = code_name
))
}
# Test the function
<- process_jedi_name("Luke", "Skywalker", "Master")
jedi_info print(jedi_info)
Date and Time Operations: The Force of Time
Working with dates and times in R is like having a time-traveling DeLorean - it helps you manipulate temporal data with precision!
Basic Date Operations
# Creating dates
<- as.Date("1977-05-25") # Star Wars release date
birth_date <- Sys.Date()
current_date
# Date arithmetic
<- current_date - birth_date
days_since_release
# Formatting dates
format(birth_date, "%B %d, %Y") # Returns "May 25, 1977"
# Extracting components
<- format(birth_date, "%Y")
year <- format(birth_date, "%m")
month <- format(birth_date, "%d") day
Time Operations
# Working with times
<- Sys.time()
current_time
# Formatting times
format(current_time, "%H:%M:%S") # Returns current time in HH:MM:SS format
# Time differences
<- difftime(current_time, birth_date, units = "hours") time_diff
Exercise 4: Date and Time Operations
Create a function that calculates various time-based statistics for a Jedi’s training period:
Use as.Date()
, Sys.Date()
, and date arithmetic functions to work with dates. Think of it as creating a Jedi training timeline!
# Function to analyze Jedi training period
<- function(start_date, end_date) {
analyze_training_period # Convert dates if they're strings
<- as.Date(start_date)
start <- as.Date(end_date)
end
# Calculate various time differences
<- as.numeric(end - start)
total_days <- floor(total_days / 7)
total_weeks <- floor(total_days / 30)
total_months
# Format dates nicely
<- format(start, "%B %d, %Y")
formatted_start <- format(end, "%B %d, %Y")
formatted_end
# Create a summary
<- list(
summary start_date = formatted_start,
end_date = formatted_end,
total_days = total_days,
total_weeks = total_weeks,
total_months = total_months,
training_intensity = if(total_days < 30) "Intensive" else "Standard"
)
return(summary)
}
# Test the function
<- analyze_training_period("2024-01-01", "2024-03-01")
training_stats print(training_stats)
Missing Values: The Dark Side of Data
Missing values in R are like the dark side of the Force - they’re mysterious and need special handling!
Working with Missing Values
# Creating vectors with missing values
<- c(80, NA, 95, NA, 88)
power_readings
# Checking for missing values
is.na(power_readings) # Returns logical vector
# Counting missing values
sum(is.na(power_readings)) # Returns 2
# Removing missing values
<- na.omit(power_readings)
clean_readings
# Replacing missing values
is.na(power_readings)] <- 0 # Replace with 0
power_readings[is.na(power_readings)] <- mean(power_readings, na.rm = TRUE) # Replace with mean power_readings[
Exercise 5: Handling Missing Values
Create a function that processes a dataset with missing values:
Use is.na()
, na.omit()
, and other functions to handle missing values. Think of it as cleaning up corrupted data from a damaged holocron!
# Function to process dataset with missing values
<- function(readings) {
process_force_readings # Count missing values
<- sum(is.na(readings))
missing_count
# Calculate statistics before cleaning
<- mean(readings, na.rm = TRUE)
original_mean <- sd(readings, na.rm = TRUE)
original_sd
# Create cleaned dataset (remove NAs)
<- na.omit(readings)
clean_readings
# Calculate statistics after cleaning
<- mean(clean_readings)
clean_mean <- sd(clean_readings)
clean_sd
# Create a summary
<- list(
summary original_data = readings,
missing_count = missing_count,
original_stats = list(mean = original_mean, sd = original_sd),
clean_stats = list(mean = clean_mean, sd = clean_sd),
clean_data = clean_readings
)
return(summary)
}
# Test the function
<- c(80, NA, 95, NA, 88, 92, NA, 85)
force_data <- process_force_readings(force_data)
results print(results)
Formatting: Making Your Data Look Good
Formatting in R is like having a protocol droid - it helps you present your data in a clean and organized way!
Number Formatting
# Basic number formatting
<- pi
pi_value format(pi_value, digits = 2) # Returns "3.1"
format(pi_value, digits = 4) # Returns "3.142"
# Currency formatting
<- 42.99
price format(price, nsmall = 2, prefix = "$") # Returns "$42.99"
# Scientific notation
<- 1234567
large_number format(large_number, scientific = TRUE) # Returns "1.234567e+06"
Exercise 6: Data Formatting
Create a function that formats various types of data:
Use format()
function with different parameters to format numbers and text. Think of it as creating your own data presentation protocol!
# Function to format various types of data
<- function(value, type = "number") {
format_data if (type == "number") {
# Format as regular number
return(format(value, digits = 2))
else if (type == "currency") {
} # Format as currency
return(format(value, nsmall = 2, prefix = "$"))
else if (type == "percentage") {
} # Format as percentage
return(paste(format(value * 100, digits = 1), "%"))
else if (type == "scientific") {
} # Format in scientific notation
return(format(value, scientific = TRUE))
else {
} return("Invalid format type")
}
}
# Test the function
print(format_data(3.14159, "number")) # Returns "3.14"
print(format_data(42.99, "currency")) # Returns "$42.99"
print(format_data(0.42, "percentage")) # Returns "42.0%"
print(format_data(1234567, "scientific")) # Returns "1.234567e+06"
Capstone Project: The Ultimate Force Challenge
Now it’s time to combine all your Jedi training into one epic challenge! Create a comprehensive program that processes and analyzes Jedi training data.
Exercise 7: Jedi Training Analytics System
Create a complete system for analyzing Jedi training data:
Combine functions, control structures, string operations, date handling, and data formatting to create a comprehensive system. Think of it as building your own Jedi Archives!
# Create a comprehensive Jedi training analytics system
<- function() {
jedi_analytics_system # Sample data
<- data.frame(
training_data name = c("Luke", "Leia", "Rey", "Anakin", "Obi-Wan"),
start_date = as.Date(c("2024-01-01", "2024-01-15", "2024-02-01",
"2024-02-15", "2024-03-01")),
initial_power = c(30, 35, 40, 45, 50),
current_power = c(85, 80, 75, 90, 95),
training_days = c(60, 45, 30, 45, 30),
completed_trials = c(5, 4, 3, 6, 5)
)
# Function to calculate training statistics
<- function(data) {
calculate_stats # Calculate power increase
$power_increase <- data$current_power - data$initial_power
data
# Calculate daily power increase
$daily_increase <- data$power_increase / data$training_days
data
# Calculate trial completion rate
$trial_rate <- data$completed_trials / data$training_days
data
return(data)
}
# Function to format report
<- function(data) {
format_report # Calculate overall statistics
<- mean(data$power_increase)
avg_power_increase <- max(data$power_increase)
max_power_increase <- mean(data$trial_rate)
avg_trial_rate
# Create formatted report
<- list(
report summary_stats = list(
average_power_increase = format_data(avg_power_increase, "number"),
max_power_increase = format_data(max_power_increase, "number"),
average_trial_rate = format_data(avg_trial_rate, "percentage")
),individual_progress = data.frame(
name = data$name,
power_increase = format_data(data$power_increase, "number"),
daily_increase = format_data(data$daily_increase, "number"),
trial_rate = format_data(data$trial_rate, "percentage")
)
)
return(report)
}
# Process the data
<- calculate_stats(training_data)
processed_data <- format_report(processed_data)
final_report
return(final_report)
}
# Run the analytics system
<- jedi_analytics_system()
results print(results)